Distribution of exchanges upon homologous recombination of exogenous DNA in Xenopus laevis oocytes.
نویسندگان
چکیده
Homologous recombination between DNA molecules injected into Xenopus oocyte nuclei was investigated by examining the recovery of information from differentially marked parental sequences. The injected recombination substrate was a linear DNA with terminal direct repeats of 1246 bp; one repeat differed from the other by eight single base-pair substitutions, distributed throughout the region of homology, each of which created or destroyed a restriction enzyme site. Recombination products were recovered and analyzed for their content of the diagnostic sites, either directly by Southern blot-hybridization or after cloning in bacteria. The majority (76%) of the cloned products appeared to be the result of simple exchanges-i.e., there was one sharp transition from sequences derived from one parent to sequences derived from the other. These simple exchanges were concentrated near the ends of the homologous interval and, thus, near the sites of the original molecular ends. Placing marked sites on only one side of the homologous overlap showed that marker recovery was governed largely by the positions of the molecular ends and not by the markers themselves. When a terminal nonhomology was present at one end of the substrate, the yield of recombinants was sharply decreased, but the pattern of exchanges was not affected, suggesting that products from end-blocked substrates arise by the same recombination pathway. Because of considerable evidence supporting a nonconservative, resection-annealing mechanism for recombination in oocytes, we interpret the distribution of exchanges as resulting from long-patch repair of extensive heteroduplex intermediates.
منابع مشابه
Dramatic changes in the ratio of homologous recombination to nonhomologous DNA-end joining in oocytes and early embryos of Xenopus laevis.
We have developed a versatile plasmid vector (pReco-sigma) for recombination studies. When linearized and introduced into the cells of interest, pReco-sigma allows the simultaneous determination of the relative frequencies of homologous recombination versus nonhomologous DNA-end joining (also termed end-to-end joining), the latter an example of illegitimate recombination processes. As a system ...
متن کاملThe S362A mutation block ROMK2 (Kir1.1b) endocytosis in Xenopus laevis oocyte membrane .
Abstract The S362A mutation block ROMK2 (Kir1.1b) endocytosis in Xenopus laevis oocyte membrane . Saeed Hajihashemi1 , 1-Assistant professor, PhD in Physiology, Department of Physiology, School of Medical science, Arak University of Medical Sciences. Introduction: ROMK channel is localized on the apical membrane of the nephron. Recent studies suggest that endocytosis of ROMK chan...
متن کاملSelecting karyophilic DNA cis elements in Xenopus laevis oocytes; a new approach.
The intracellular localisation and mobility of exogenous DNA introduced into Xenopus laevis oocytes is largely unknown. In this paper, we report a new technique to investigate the cytoplasmic/nuclear transport of a random pool of linear, double-stranded, oligomeric DNA of 147 bp in length. We chose a combinatorial approach which made use of repetitive rounds of selection and amplification to se...
متن کاملGradual loss of DNA-PK activity from the cytoplasm is coincident with the nuclear translocation of its activator Ku during early development of Xenopus laevis.
DNA-dependent protein kinase is a serine/ threonine kinase consisting of a catalytic subunit, p460, and a regulatory subunit called Ku (p80/p70). DNA-dependent protein kinase plays a role in transcription, non-homologous recombination, and DNA repair. Previous data have shown the presence of DNA-dependent protein kinase in Xenopus oocytes and changes in its activity during vitellogenesis. Metab...
متن کاملO-10: A Marked Animal-Vegetal Polarity in The Localization of Na+,K+-ATPase Activity and Its Down-Regulation Following Progesterone-Induced Maturation
Background: Polarized cells are key to the process of differentiation. Xenopus oocyte is a polarized cell that has complete blue-print to differentiate 3 germ layers following fertilization, as key determinant molecules (Proteins and RNAs) are asymmetrically localized. The objective of this work was to localize Na+, K+-ATPase activity along animal-vegetal axis of polarized Xenopus oocyte and fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genetics
دوره 138 2 شماره
صفحات -
تاریخ انتشار 1994